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A B S T R A C T   

Existing models of facial first impressions indicate between two and four factors that underpin all 
social trait judgements. Here, we submitted several large databases of these first impression 
ratings to unsupervised learning algorithms with the aim of clustering together faces, rather than 
traits, to examine the ways in which impressions may be grouped together. Experiment 1 revealed 
two clusters of faces that exist in both a full-dimensional, and two- or three-factor representations, 
of social impressions, while Experiment 2 indicated that these clusters also emerged in additional 
datasets. In Experiment 3, using Bayesian modelling approaches, we extracted the impression 
profile of each cluster and also derived a vector that maximally separated the clusters. The 
resulting vector related strongly to the valence and approachability components in existing 
models. In a further test of our model, we showed in Experiment 4 that mere facial appearance, 
rather than perceptions, is sufficient to separate these clusters, demonstrating probabilistically 
that facial cues like smiling may drive the perceptual profile that gives rise to the perceptual 
clusters. Finally, Experiment 5 showed that observer responses to faces in these two clusters 
mapped closely on to approach-avoidance behaviour, with observers responding rapidly and 
without instruction to approach faces from one cluster over the other. Taken together, our 
findings provide compelling evidence, drawing upon both computational and behavioural ap
proaches, that existing models of social impressions are realised practically in terms of basic 
approach-avoidance mechanisms.   

1. Introduction 

Facial appearance plays a crucial role in everyday life. From inferring basic information about individuals, such as their age 
(Porcheron, Mauger, & Russell, 2013) and sex (George & Hole, 1995; Russell, 2009), through to complex hiring and voting decisions 
(Chiao, Bowman, & Gill, 2008; Little, 2014; Marlowe, Schneider, & Nelson, 1996), faces play a central role in human social in
teractions. Decisions about individuals based on facial appearance form without prompting (Jones, Tree, & Ward, 2019; Ritchie, 
Palermo, & Rhodes, 2017) and may occur in less than 250 ms (Borkenau, Brecke, Möttig, & Paelecke, 2009). The persistent and 
ubiquitous nature of these judgements points to a fundamental role in human psychology – helping us to make survival-relevant 
decisions, such as identifying aggressive or unhealthy individuals (Haselhuhn, Ormiston, & Wong, 2015; Henderson et al., 2017). 

Significant research efforts have been dedicated to understanding the fundamental psychological processes and variations in facial 
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appearance that give rise to first impressions. A critical finding is that perceptions based on appearance tend to be correlated – for 
example, judgements of trustworthiness are associated, to a greater or lesser extent, with almost every other social trait perception, and 
certain facial characteristics (e.g., a positive-looking neutral expression) seem to cause some perceptions more than others (Jones et al., 
2018; Todorov, 2008). Put simply, there is no perception that cannot be explained in part by another, and these correlated perceptions 
are associated with statistical regularities in facial appearances (Todorov, Dotsch, Porter, Oosterhof, & Falvello, 2013). In recent years, 
advancing knowledge in this area has abandoned more top-down, hypothesis-driven approaches – such as finding the facial attributes 
linked with health perception (Jones, Porcheron, Sweda, Morizot, & Russell, 2016) – in favour of bottom-up, data-driven techniques 
(Holzleitner et al., 2019; Sutherland, Rhodes, & Young, 2017) that are capable of discerning the underlying structure of perceptions 
and associated facial appearances. 

Initial efforts taking this approach utilised principal component analysis (PCA) and applied this technique to multiple trait di
mensions, generating the well-known valence-dominance model of face evaluation (Balas, Tupa, & Pacella, 2018; Morrison, Wang, 
Hahn, Jones, & DeBruine, 2017; Oosterhof & Todorov, 2008). In this approach, a set of orthogonal components are derived, with each 
explaining successively less variation in the original perceptual space, and the loadings of each impression on those components which 
explain substantial variance are calculated. In the original derivation of the model, high loadings for traits like trustworthiness and 
attractiveness were found on the first principal component, while dominance and aggressiveness loaded on to the second component 
(Oosterhof & Todorov, 2008). It is also possible to extract the appearance of faces with high or low scores on these components, 
indicating the morphology associated with these fundamental axes. This simple, two-dimensional model also aligns with social 
cognitive models of impression formation, such as the warmth-competence dimensions of intergroup perceptions (Fiske, 2018). 

While the valence-dominance model was initially derived from real faces, it has been extensively validated and extended using 
computer-generated faces that may induce systematic biases in the perception of social traits (Balas & Pacella, 2017). To correct this, 
recent models have featured realistic, ‘ambient’ images – photographs of individuals of different ages and expressions, similar to those 
found on social media profiles. By collecting multiple impressions of these ambient images, and conducting a factor analysis (FA) on 
these impressions, an expanded three-dimensional model emerges (Sutherland et al., 2013). This model (approachability, youthful- 
attractiveness, and dominance) appears to better approximate how real faces are socially evaluated, and in contrast to PCA-derived 
solutions (which are orthogonal by definition), it captures correlations in underlying structure. For example, the youthful- 
attractiveness factor correlates with the approachability factor, mirroring how attractive faces induce approach behaviours in ob
servers (Kramer et al., 2020). However, both of these components are almost independent of (i.e., are orthogonal to) the dominance 
component (Sutherland et al., 2013). Additionally, this three-factor structure seems to emerge at the within-observer level, as well as 
when aggregating ratings across observers (Sutherland, Rhodes, Burton, & Young, 2019). 

However, more recent evidence has demonstrated that these two- and three-factor models may not fully capture the underlying 
structure underpinning social judgements due to an insufficient sample of impression ratings. The two- and three-dimensional models 
(Oosterhof & Todorov, 2008; Sutherland et al., 2013) were derived by asking observers to provide around 13 trait judgements for faces. 
When observers provided judgements regarding 100 traits, a four-factor structure emerged – warmth, competence, and both female 
and youth stereotypes (Lin, Keles, & Adolphs, 2019), suggesting a more comprehensive set of evaluations leads to more factors. Other 
work has attempted to assess the universality of the two- and three-factor models by investigating the structure of impressions from 
many different global regions using 13 trait impressions (Jones et al., 2021). Interestingly, these comprehensive analyses found that 
the number of factors emerging from both PCA and FA approaches varied between two, three, and four factors, depending on the global 
region, but supported the general structure of a clearly low-dimensional representation of the psychology of social impressions. 
However, these analyses also show that the “true” number of factors that underpin social impressions shows significant variability. 

Despite the inconsistent number of factors that emerge across studies, there is convergence in their typical content, particularly in 
the factor that explains the largest amount of variability which corresponds typically to positive versus negative valence (Oosterhof & 
Todorov, 2008; Sutherland et al., 2013), and researchers are in agreement that the wide range of impressions we form of others can be 
reduced to a smaller number of factors or core dimensions – a more compact representation of social perception does exist. However, 
there is an important distinction that the current literature has failed to address. While existing analyses demonstrate observers can 
make judgements of others based on a reduced number of factors, they do not speak to how observers use these factors. For example, it 
is unknown whether faces are judged mostly according to their positions along one of the primary factors, or whether impressions are 
arrived at by considering all factors simultaneously – what weightings are these factors given? We can cast the argument geometrically, 
treating the factors as vectors in face space, where each location or data point is a face, represented by a vector drawn from the origin. It 
is not known whether these vectors are short, indicating little variability in their use (i.e., most faces are judged similarly on the factor, 
but it is necessary to explain variance in judgements) or long, indicating greater variability (i.e., faces vary widely in their position on 
the factor). Given that the majority of research has focussed on the use of FA or PCA to reduce the number of variables into a smaller 
number of factors (e.g., distilling social perceptions into trustworthiness or aggression), we note the reverse perspective – clustering 
faces into groups based on similarities in perceptions – has been ignored and is arguably more relevant to our understanding of social 
perception formation. Existing methods point to some inferences about this, given that PCA solutions provide an explained percentage 
of variance in the original data. For instance, two-factor models tend to find that the first component (‘valence’) explains almost twice 
the amount of variance in comparison with the second component (‘dominance’; Oosterhof & Todorov, 2008), indicating a sub
stantially more important role of the former when judging faces. 

Precedent for this approach can be found in neighbouring literature. Although substantial research supports the idea that an in
dividual’s personality can be summarised using five (John & Srivastava, 1999) or six (Lee & Ashton, 2004) underlying dimensions, 
more recent work has investigated how such a multidimensional space is populated. Analyses identified only four clusters or ‘per
sonality types’ (Gerlach, Farb, Revelle, & Nunes Amaral, 2018), demonstrating that large areas of this space remain unoccupied and 
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that specific combinations of personality trait scores frequently co-occur. Indeed, if these four types are capable of describing how 
individuals vary with regard to personality, they may also represent candidates for the clusters we identify in the current study, where 
we explore the perceptions of others. Another promising possibility may be the biologically-inspired decision to approach or avoid 
(Gray, 1970). Evidence to support this classification is provided by numerous disciplines (Cacioppo & Berntson, 1994; Depue & Collins, 
1999; Tellegen, 1985; Watson & Clark, 1997) and the motivation to approach or avoid a given target is thought to be fundamental to 
our personalities and decision-making processes (Elliot & Thrash, 2002). As such, it would make intuitive sense that this simple, binary 
decision might underlie more complex social trait judgements. 

It is worth considering whether a limited number of clusters exist within the unending list of social trait perceptions that one might 
apply as it relates directly to the reality of these perceptions. Given that trait perceptions are correlated, it is likely that many kinds of 
judgements are similarly low for a given face (e.g., if a face is judged as aggressive, it is also likely to be judged as low on trust
worthiness, warmth, and approachability; Todorov, 2008) and there may be a typical appearance that elicits this pattern of trait 
judgements. This approach proceeds differently to the construction of models with an interchangeable number of dimensions that 
attempt to capture all the possible ways in which we judge others, with such models giving little priority to the importance of certain 
factors. Instead, we focus on determining groups or clusters of faces that share similar evaluative profiles, along with any potential 
associated appearances. The code for the analyses are available on the Open Science Framework (osf.io/8pj3x). 

2. Experiment 1: Cluster analysis of social trait ratings in full and theoretical face-space 

Our first aim was to test for the presence of distinct clusters of identities that emerge from multidimensional trait impression data. 
To examine this, we employed mean shift, a non-parametric, unsupervised feature space algorithm (Comaniciu & Meer, 2002), and 
applied this to a large, open access set of faces – the 10 k US Adult Faces Database (Bainbridge, Isola, & Oliva, 2013), examining these 
clusters in the full set of data, as well as splitting the data by female and male faces. We also sought to examine the robustness of the 
resulting clusters by testing for the presence of clusters in the two- (Oosterhof & Todorov, 2008) and three-dimensional (Sutherland 
et al., 2013) factor representations of this multidimensional trait space. 

2.1. Method 

2.1.1. Stimuli 
The 10 k US Adult Faces Database (Bainbridge et al., 2013) comprises 2222 adult face images taken from real world scenarios, 

mirroring the unconstrained, ‘ambient’ images used in three-factor models (Sutherland et al., 2013). The set consists of 57.1% men and 
83.7% White faces (9.9% Black, 3.1% Asian, and 3.2% Hispanic). Sex and ethnicity data were previously determined by a set of 
Amazon Mechanical Turk (MTurk) workers. Each of the face photographs was rated on 14 trait dimensions generated from free-flow 
descriptions of a set of faces (Oosterhof & Todorov, 2008) – emotionally stable, attractive, sociable, confident, boring, aggressive, weird, 
caring, unhappy, responsible, intelligent, trustworthy, mean, and egotistic. Faces were also rated for their antonyms (e.g., happy vs un
happy, unattractive vs attractive), but only the original 14 traits were retained for analysis. Faces were previously rated by 1274 MTurk 
workers, and trait ratings were averaged across workers to provide a score for each face, and these were z-scored before subsequent 
analyses. Thus, each face is represented by a single data point within this 14-dimensional space. 

2.1.2. Clustering 
Rather than employing dimension reduction techniques such as PCA or FA in order to compress the 14 traits into a lower- 

dimensional space, here we are interested in extracting clusters of individual faces that occupy particular regions within this space. 
To do this, we used the mean shift algorithm (Comaniciu & Meer, 2002). Designed for applications in image segmentation and 
computer vision (Comaniciu & Meer, 1999), mean shift proceeds by moving a flat (i.e., non-Gaussian) circular kernel of a given radius 
through a multidimensional space. The window assesses neighbourhoods of points within the circle, computing a candidate centroid 
for that neighbourhood through deriving Euclidean distances between points. On each iteration, the algorithm moves towards regions 
of the highest density of points, updating the candidate centroid to represent the average of the points in its neighbourhood. The 
algorithm stops when the change in candidate centroids is small, and very similar candidate centroids are then discarded. The result is 
a set of centroids, along with clusters of identified points that are nearest to them. 

Mean shift has significant benefits over other clustering algorithms and dimension reduction techniques. It is non-parametric and 
thus requires no assumptions of linearity (unlike PCA or FA), and importantly, it requires no researcher decisions on the number of 
clusters to search for (or equivalently, the numbers of factors to retain). Mean shift has a single setting that must be optimised – the 
radius of the kernel, which determines the amount of points the algorithm considers at once. Here, to select the radius, we used a 
uniform prior (from zero to a maximum that encompassed all points at once, thus making the clustering redundant), evaluating the 
performance of the clustering algorithm at each radius using the Silhouette Coefficient (SC; Rousseeuw, 1987). Silhouette scores 
compare the mean distance between a particular data point and all other points within its assigned cluster against the mean distance 
between that data point and all other points in its next-nearest cluster. These ratio scores are then averaged across all data points to 
provide the SC. Here, the radius that produced the highest SC was selected to derive the number of clusters (radius = 3.2). We also used 
a far simpler clustering approach, K-Means, to confirm the presence of clusters and SC scores. 

2.1.3. Theoretical social perception spaces 
To test for the presence of clusters in existing theoretical social face perception spaces, we generated the models from the data 
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Fig. 1. Summary of the cluster analysis resulting from the ratings included in the 10 k US Adult Faces Database (Bainbridge et al., 2013). A) The 14- 
dimensional space reduced to two dimensions via t-SNE (t-Distributed Stochastic Neighbour Embedding), coloured for each cluster. Black circles 
represent the mean shift derived centroids. B) Mean shift clustering on the three-factor model, and C) on the two-factor model. In both cases, mean 
shift demarcates almost entirely the same set of faces into cluster one. Black circles indicate the obtained centroids of the clusters with mean shift. 
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according to the descriptions provided by the original authors. For the two-dimensional valence/dominance model, we subjected the 
14 trait ratings of all the faces to a principal components analysis, and projected the data onto the first two components, as described by 
Oosterhof and Todorov (2008). We label this as principal component space (PCS). For the three factor model, we used factor analysis, 
retaining three components, fit with maximum likelihood estimation and with oblimin rotation (Sutherland et al., 2013), which we 
term factor analysis space (FAS). Note that this approach should, if existing models are robust, provide an excellent instantiation of 
both models – we use the same trait impressions for the PCA model as the original authors, and the assumptions of FA include that 
observed variables (e.g., meanness, trustworthiness) are linear combinations of underlying factors, and therefore should be robust to 
slight differences in trait impressions. After creating these reduced spaces, we applied the mean shift algorithm to resulting values as 
before. 

2.1.4. Sample size considerations 
Clustering is an exploratory approach, and where we conduct tests for differences between clusters, our sample size is limited to the 

number of faces in the stimulus sets (here, n = 2222). The sensitivities of our tests are reported where applicable. 

2.2. Results 

2.2.1. Full dataset clusters 
Applying mean shift to the full 2222 data points, with all traits z-score standardized, revealed two underlying clusters, SC = 0.44. 

Cluster zero contained 1771 (80%) faces and cluster one contained 451 faces. Before applying further analysis to these clusters, we also 
applied K-Means clustering - a computationally far simpler procedure - to the same data, by testing the SC across two-, three-, and four- 
cluster solutions. The highest K-Means SC was observed with two clusters (SC = 0.41), dropping off sharply thereafter (three clusters 
SC = 0.26, four clusters SC = 0.18). Cluster zero of the K-Means solution contained 1629 faces (73%) of the dataset. Ninety-three 
percent of faces were allocated to the same cluster by K-Means as mean shift, but K-Means allocated an additional 142 faces to 
cluster one. 

Before examining the clusters in more detail, we tested for an association between mean-shift cluster placement and the sex of the 
face, to understand whether a simple sex difference may be associated with a difference in clusters in social perceptions. A chi-square 
test showed a statistically significant association, χ2(1) = 145.81, p < .001, V = 0.25. Given the sample size, the test is sensitive to 
effects as small as V = 0.07, with 95% power and an alpha level of 0.05. Out of the 451 assigned to cluster one, 371 were male. As such, 
we tested for the presence of cluster formations within each sex separately. 

2.2.2. Sex separated clusters 
For the female dataset (n = 955), a two-cluster solution (mean shift bandwidth = 3.8), produced the highest silhouette coefficient, 

SC = 0.48. Using K-Means as a robustness check also revealed two clusters produced the highest score (two clusters SC = 0.37, three SC 
= 0.21, four SC = 20). Mean shift assigned a small proportion of female faces to cluster one (n = 84, 9%), while K-Means assigned 224 
(23%). Despite this, the overall agreement between the clustering solutions was relatively high, with 85% of faces being assigned to the 
same cluster by either approach. 

For the male dataset (n = 1267), a two-cluster solution also emerged (mean shift bandwidth = 2.9), producing the highest 
silhouette coefficient, SC = 0.42. A robustness check with K-Means also revealed two clusters as the optimal solution (two clusters SC 
= 0.39, three SC = 0.24, four SC = 0.19). Mean shift assigned a larger minority of male faces to cluster one (n = 331, 26%), while K- 
Means assigned 378 (30%). The agreement between clustering approaches was very high, with 97% of faces being placed in the same 
cluster. 

2.2.3. Clusters in existing theoretical social perception space 
Given the consistent emergence of two clusters across male and female spaces, we generated the two- and three-factor models (PCS 

and FAS, respectively) on the entire dataset. Applying mean shift to the two-dimensional valence/dominance model, or PCS, revealed 
again that two clusters provided the highest silhouette score, SC = 0.56. Applying K-Means also confirmed two clusters resulted in the 
highest SC (two clusters SC = 0.54, three SC = 0.42). Similarly, for the three-factor space, or FAS, two clusters also emerged after 
applying mean shift (SC = 0.48), which was also supported by K-Means (two clusters SC = 0.44, three SC = 0.30). 

We next examined the consistency with which faces were clustered in the full dataset, and the respective two- and three-factor 
models. Consistency was high for the FAS, with 98% of faces being assigned to the same cluster in both the full and FAS represen
tation of the data. For the PCS, this was 97%. A visual comparison of each clustering solution by mean shift, for all three 

Table 1 
Confusion matrices of clustering solutions in reduced spaces when compared with the full space.   

FAS PCS 

Full data Cluster Zero Cluster One Cluster Zero Cluster One 

Cluster Zero 1761 10 1771 0 
Cluster One 51 400 48 403 

Note. FAS = factor analysis space; PCS = principal component space. 
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representations of the data, is shown in Fig. 1. 
The confusion matrices for each clustering solution (comparing the full-dimensional clustering result to the FAS, and the full- 

dimensional clustering to the PCS) are shown in Table 1. To assess their similarities more fully, we computed a chi-square statistic 
and Cramer’s V as an effect size. For the full dimensional and FAS clustering, the association was significant, χ2(1) = 1849.46, p < .001, 
V = 0.91, as was the case with the PCS clustering, χ2(1) = 1927.10, p < .001, V = 0.93. Given the sample size, the test is sensitive to 
effects as small as V = 0.07, with 95% power and an alpha level of 0.05. 

2.3. Discussion 

We demonstrate the existence of two distinct clusters within a large set of trait impressions and faces. These clusters existed both 
within the full-dimensional space and within the representations of social impressions that have become central in this research area. 
Mean shift, an algorithm ideally suited to exploring high-dimensional spaces for groups of observations, allocated 20% of individuals 
into a separate and distinct cluster when dealing with the full-dimensional representation of the dataset, and faces assigned to cluster 
one were similarly assigned when mean shift was used on the two- and three-dimensional models of social trait space. Further analysis 
suggested that more male than female faces were placed into cluster one, which suggested that differences in perceptions of men versus 
women could explain the cluster solution. However, two clusters also reliably emerged when considering men and women separately, 
and maintained the general pattern seen within the full clustering solution. Using K-Means as an alternative, simpler clustering al
gorithm supported the initial results. 

These initial results indicate that social perception of faces is ‘clumpy’. Even when social perceptions are projected down onto 
theoretical factor spaces, we find that these spaces are not occupied uniformly – there seems to exist two general clusters that faces can 
be readily assigned to, one which is far smaller than the other. While we have shown that there exists a male bias in this smaller cluster, 
we have yet to investigate the kinds of perceptions that demarcate each cluster. Before investigating this question, we use additional 
data to test for the presence of a two-cluster solution to confirm the replicability of our initial findings. 

3. Experiment 2: Cluster stability using other sets of ratings 

Although the evidence presented in Experiment 1 strongly supports the existence of two clusters that account for the ratings given 
to faces, we initially remain skeptical with regard to the stability of these clusters. A significant amount of research effort has been 
focussed on reproducing two- and three-factor solutions, with sometimes mixed results, as discussed previously (Jones et al., 2021; Lin 
et al., 2019; Sutherland et al., 2019). Our aim here was to test for the presence of a two-cluster solution in datasets of social trait ratings 
that contain different social trait impressions. If the cluster solution is robust, then it should emerge regardless of the variation in 
measured social traits and the number of these traits used. 

3.1. Method 

3.1.1. Stimuli 
We attempted to recover cluster solutions similar those found in Experiment 1 using two additional face databases. 
Sutherland et al. (2013). The dataset used to generate the three-factor model of social perception contains 1000 ambient face 

images, similar to the 10 k US Adult Faces Database, varying naturally in pose, expression, and lighting. The set consists of equal 
numbers of men and women but contains only Caucasian individuals. This set also provides social impressions for 13 traits, with these 
traits mostly differing from those used in the 10 k US Adult Faces Database. As such, these represent a useful test of stability in 
clustering solutions. Faces in this set are rated for age, approachability, attractiveness, intelligence, babyfacedness, smiling, health, skin tone, 
trustworthiness, confidence, aggressiveness, dominance, and degree of sexual dimorphism. Ratings of these traits were averaged across 50 
participant raters, providing a rating of each trait per face. 

Lin et al. (2019). The dataset previously used to support a four-factor model of social perception comprises 100 front-on, neutral 
face photographs of Caucasian individuals, with even numbers of men and women. Faces were selected from a wider pool of in
dividuals by maximising differences in Euclidean distances of face vectors encoded by the Dlib (King, 2009) neural network. Thus, 
while limited to constrained images, these faces provide a great range of appearance within Caucasian individuals. These faces were 
rated for 100 traits that were generated from an agglomerative clustering solution of a set of descriptors (e.g., friendly, kind) embedded 
into a word vector generated by a neural network. Ratings included traits like helpful, prudish, mature, independent, nosey, etc. The full 
range of descriptors are available in the original study. Ratings of these traits were averaged across 1,500 participant raters, providing 
a rating of each trait per face. This set provides an additional, stringent test of the clusters we identified earlier as the feature space is an 
order of magnitude larger, and perceptions are made of neutral faces where no expression is visible. 

As with our initial clustering analysis (Experiment 1), we applied mean shift to each of these z-score standardised datasets, 
configuring kernel radius before extracting clusters. 

3.1.2. Sample size considerations 
Clustering is an exploratory approach, and where we conduct tests for differences between clusters, our sample size is limited to the 

number of faces in the stimulus sets (here, n = 1000 and n = 100). The sensitivities of our tests are reported where applicable. 
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3.2. Results 

3.2.1. Sutherland et al. (2013) 
For this dataset, mean shift (radius = 3.0) produced two clusters, although with a somewhat lower silhouette score than was 

observed in Experiment 1 with the 10 k Face Database; SC = 0.24. As before, using K-Means, a simpler clustering technique, also 
produced two clusters as the best fit (SC = 0.24), confirming the result. 

Cluster one contained 326 (33%) faces, indicating again the presence of a smaller cluster, but a somewhat larger minority than 
shown in Experiment 1. Testing for an association between cluster labels (zero or one) and the sex of the face again revealed a sig
nificant association, χ2(1) = 1849.46, p < .001, V = 0.27. Given the sample size of 1000, the test is sensitive to effects as small as V =
0.11, with 95% power and an alpha level of 0.05. Of the 326 faces in cluster one, 227 (69%) were male. As before, we examined for the 
presence of the two clusters within each sex, separately. 

For women (n = 500), mean shift (radius = 2.6) produced two clusters (SC = 0.26), which was also supported by K-Means (two 
clusters SC = 0.24, three SC = 0.19, four SC = 0.19). Cluster one was again smaller than cluster zero, with 116 faces (23%) allocated to 
it, which was a significantly larger proportion than that seen in Experiment 1 when splitting the dataset by sex. 

For men (n = 500), mean shift (radius = 2.48) also produced two clusters (SC = 0.24), which was also supported by K-Means (two 
clusters SC = 0.23, three SC = 0.21, four SC = 0.19). Cluster one was also smaller here, with 145 faces (29%) allocated to it, very 
similar to what was observed in Experiment 1. 

3.2.2. Lin et al. (2013) 
For this dataset, mean shift (radius = 8.9) produced two clusters, with a similar silhouette score to the Sutherland et al. dataset, SC 

= 0.23. K-Means also produced two clusters as the best fit (two clusters, SC = 0.25, three clusters SC = 0.22). 
Cluster one contained 19 (19%) faces, indicating again the presence of a smaller cluster. Testing for an association between cluster 

labels (zero or one) and the sex of the face here revealed no significant association, χ2(1) = 0.26, p = .610, V = 0.05. With a sample size 
of 100, the test is sensitive only to effects as small as V = 0.11, with 95% power and alpha of 0.05, indicating this test is likely un
derpowered. Of the 19 faces that were in cluster one, 11 were male. 

3.3. Discussion 

Across two additional datasets that previously proposed influential models of person perception, cluster analyses consistently 
revealed two clusters. The data of Sutherland et al. (2013) showed a similar pattern to that of the 10 k Adult Faces Database in that a 
smaller cluster of faces was apparent, and within this cluster was a higher number of male faces. However, two clusters also emerged 
within both female and male ratings only. The data of Lin et al. (2019) showed a similar, smaller cluster, though no preponderance of 
male faces was observed. Taken together, these results support those of Experiment 1 – there exists ‘clumps’ of faces in social 
perception which can be classified into two clusters, and these clusters seem to emerge reliably despite variations in the number and 
kind of social traits that are used to generate the solutions. 

Of note here was the noticeably weaker cluster solutions than those observed in Experiment 1, with silhouette coefficients around 
half as large as initially shown. This may be due to two factors – the data of Sutherland et al. (Sutherland et al., 2013) contain only 
Caucasian faces, while the 10 k Faces set contains a multitude of ethnicities. This might suggest that ethnicity plays a role in the 
formations of these clusters. For the data of Lin et al., which did indeed contain a multitude of ethnicities, the weaker association may 
be due to the size of the dataset being ill-suited to cluster analysis, containing only 100 observations. Guidelines for cluster analysis 
propose the use of 70 times the number of samples to variables (Dolnicar, Grün, Leisch, & Schmidt, 2013). Second, the dataset provided 
a fundamentally different sort of perception as compared to that of Sutherland et al. and the 10 k Adult Faces Database, in that the 
perceptions were collected for standardised, neutral face photographs, which others have argued is an artificial representation 
(Satchell, 2019) – whether clusters of perceptions exist in these kinds of scenarios is therefore unclear. To summarise, the cluster 
solutions evident in the data appear to be fairly robust – there seems to exist a pair of clusters in social perception space (in either its full 
or compressed theoretical representations), with one cluster being significantly smaller than the other. 

4. Experiment 3: Understanding the perceptual characteristics of cluster profiles 

Broadly, Experiments 1 and 2 indicate a ‘clumpiness’ of social perception from faces, revealing two distinct clusters that are 
apparent across varying datasets, theoretical component representations of the data, and choice of clustering algorithms. While these 
clusters appear reliable, it is so far unclear what kind of ‘perceptual profile’ gives rise to them – specifically, the combination of trait 
perceptions that result in a higher probability of a face falling into cluster zero or one. Our primary aim in the following experiment is 
to establish the pattern of ratings that results in a given face being placed in one cluster or another. While it is possible to examine the 
centroid of each cluster for a description, we wish to draw probabilistic inferences about which differences are most associated with 
belonging to either cluster. 

The existing two- and three-factor models of social perception suggest an overall impression of an individual can be determined by 
identifying their location along each of the factors, and Experiment 1 suggested that the clusters were apparent even in these theo
retical spaces. However, these component models (which produce sets of factors, representing individual face positions along these 
factors) are not directly comparable with cluster-based solutions (which produce centroids and cluster assignments). A secondary aim 
is to generate a ‘cluster axis’ that represents an axis connecting the two clusters, which can then be used to compare the cluster solution 
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with existing models. 
To achieve our primary aim of deriving the cluster profiles, we use a Bayesian logistic regression with a train and test split of the 

data, using highly restrictive priors to guard against overfitting. This will give a conservative estimate of the trait perceptions that leads 
to assignment in cluster zero or one. To achieve our secondary aim, we use linear discriminant analysis (LDA), to generate a maximally- 
discriminant axis that can be compared to existing two- and three-factor solutions. For the following analysis, we focused on the use of 
the 10 k Adult Faces Database, due to the sample size and variations in expression, ethnicity, and gender. 

4.1. Method 

4.1.1. Estimating cluster profiles – Bayesian logistic regression 
To estimate the different cluster impression profiles, we used Bayesian inference to fit a logistic regression that classified faces into 

cluster zero or one based upon the trait ratings assigned to each face, as well as whether the face is male or female. Our reason for using 
Bayesian inference is to guard against circular analysis (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009) – for a model to classify 
clusters (and thus provide theoretically important information about what discriminates them), the clusters must be generated from a 
dataset, and that same dataset must necessarily be used to train the classifier, with a consequence being that results will appear much 
stronger than they actually are. Bayesian methods can mitigate this issue through the use of very strong priors on model coefficients, 
which will drive estimates down towards zero. More simply, the use of Bayesian approaches allows us to make the differences more 
difficult to estimate and prevents overstating these differences between clusters. This is analogous to regularisation methods that 
prevent overfitting in frequentist models, such as ridge regression (Marquardt & Snee, 1975). 

We also take additional steps to guard against overstating any effects. Our analysis pipeline proceeds as follows. First, we randomly 
split the 10 k Face Database into a training (comprising 75% of the data, n = 1666 observations) and testing set. Both sets were z-score 
standardised separately. The Bayesian logistic regression was fitted to the training data using strongly regularised priors for each of the 
fourteen coefficients (one categorical sex predictor, and thirteen trait ratings), using a normal distribution with scale zero and a 
standard deviation of 0.05, ~ N(0, 0.05), with the aim of separating the mean shift assigned cluster label. A standard normal prior was 
also used for the intercept, ~ N(0, 1), and a Bernoulli distribution was used for the likelihood. As logistic regression coefficients are 
estimated on the log-odds scale, our priors reflect that the odds of assignment to cluster zero or one are most probable between 0.95 
and 1.05; close to no effect. Once the model was fitted, we used it to predict the test score cluster labels, assessing its accuracy (the 
number of cluster one and cluster zero labels predicted correctly, divided by n), and recall (the number of cluster one faces assigned as 
cluster one, out of the total number of cluster one faces in the test data) to evaluate its performance. 

In making decisions about the importance of parameters, we set a null region of the posterior distribution of the odds as between 
0.95 and 1.05 (Kruschke, 2018). Posterior 95% highest-density intervals (which represent a 95% probability that the true effect is 
within the given bounds) overlapping or falling within this region we consider having insufficient evidence to determine assignment 
into cluster zero or one. Models were estimated using the PyMC3 package with Markov Chain Monte Carlo methods (Salvatier, Wiecki, 
& Fonnesbeck, 2016). 

Statistical power is appropriate within frequentist paradigms, representing the probability of correctly rejecting a null hypothesis 
when an alternative is true. The Bayesian analysis conducted here focuses on the 95% highest density interval of parameter coefficients 
as a way to interpret the coefficients and whether they have any influence on belonging to a given cluster. As we use very strict priors, 
our model is conservative – any effects must necessarily be present to overwhelm the prior – that is, we are guarding against a false 
positive conclusion. In addition, we also focus on a null region rather than a point-null hypothesis, which is again more conservative, as 
the coefficients must be outside a region considered to be null and not just a point value (Kruschke, 2018; Kruschke & Liddell, 2018). 
Moreover, our focus is not on general hypothesis testing here, but on fitting a model that is generalisable. We employ cross validation 
for testing this – whether our restricted, fitted model is able to predict new data that is unseen. 

4.1.2. Comparing cluster solutions with existing models – Linear discriminant analysis 
To draw comparisons between the cluster profiles and two- and three-factor models, it is necessary to generate a vector that de

scribes the differences between the clusters in terms of their perceptual profiles, and project each face’s ratings on this vector. This 
operation allows instantiations of the two- and three-factor models to be compared in a common geometric space, where each 
component is represented by a vector with n elements, where each n is a face projected onto the component (through PCA or FA). 

To do this with the cluster solution generated by mean shift in the previous sections, we employed linear discriminant analysis 
(LDA). LDA, while historically a statistical classification technique (Izenman, 2008) has the desirable property of producing axes that 
maximise the separation between the classes it discriminates, upon which it is possible to project data points. As such, by using the 
perceptual ratings of each face as predictors, and the assigned cluster label as the target, an LDA axis can be generated that sits in the 
common geometric space with the PCA and FA components by projecting the perceptual ratings for each face onto the LDA axis, in the 
same way that the perceptual ratings are projected onto PCA or FA solutions. Geometrically, this analysis is similar to computing a 
vector between the cluster centroids, and deriving the scalar projection of each face onto the resulting axis. 

Analysing the relationships amongst these components - produced by several different attempts to model social face perception - 
can thus be achieved by computing the Euclidean distances between the resulting axes and using Pearson correlations – or equivalently 
cosine similarity (CS◦) – which both represent the angle between vectors. These metrics allow for an intuitive comparison of the 
clustering solution with existing models in simple terms of how far away the cluster axis lies from two- or three-factor model com
ponents, and how closely aligned it is to those components. The power for these statistical tests is limited by the sample size (here n =
2222). For these correlations, the smallest effect we can detect reliably is r = 0.07, with power at 95% and alpha of 0.05. 
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Here, we took the full set of 2222 images and used LDA to predict the mean shift assigned cluster labels from the perceptions of all 
14 traits, recovering the axis of maximal separation between the clusters. After projecting each face’s trait ratings onto it, the axis was 
then compared with the two principal components representing the two-factor model (Oosterhof & Todorov, 2008), and the three 
factors from FA representing the three-factor solution (Sutherland et al., 2013), both of which were derived in Experiment 1 on the full 
data set. 

4.2. Results 

4.2.1. Estimating cluster profiles – Bayesian logistic regression 
The coefficients from the Bayesian logistic regression estimated on the training data were exponentiated and converted to odds, and 

are displayed in Fig. 2. Several predictors – whether the face was male or female, and ratings of the traits boring, confident, and attractive 
overlapped with the null region, indicating insufficient evidence of their contribution to assignment to cluster one or zero. However, 
other predictors showed clearer effects. A one standard deviation increase in ratings of caring, sociable, and trustworthy were associated 
with lower odds of a face being assigned to cluster one by around 20%, while the same increase in in ratings of aggressive, mean, and 
unhappy were associated with an increase in odds of around 26% of belonging to cluster one. 

When predicting the cluster labels of the test data, the model had good accuracy (labelling cluster one faces as one, and cluster zero 
faces as zero), M = 0.88, 95% HDI [0.85, 0.89]. Recall (the number of cluster one faces identified correctly out of all cluster one faces) 
was somewhat less, with the model identifying around 71% of all cluster one faces correctly, M = 0.71, [0.62, 0.78]. The receiver 
operating characteristic area under curve (ROC-AUC) showed very clear separation between clusters, M = 0.999, [0.998, 1]. 

4.2.2. Comparing cluster solutions with existing models – Linear discriminant analysis 
LDA was used to maximally separate the mean shift assigned labels from Experiment 1 to the full dataset, with the trait ratings as 

predictors. This generated an axis that maximally separated each cluster from one another, and that we were able to project the trait 

Fig. 2. Top – posterior distributions of the coefficients of the Bayesian logistic regression. White circles represent the mean of the posterior in odds, 
while the error bars depict the limits of the 95% highest posterior density intervals. The shaded central region represents odds of 0.95–1.05, which 
defines our null effect region – posteriors overlapping this have inconclusive evidence of an effect. Bottom – the distributions of accuracy and recall 
of the fitted model on the test data, the clusters of which were generated independently of the training clusters. 
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ratings of each face onto in order to form a ‘cluster axis’. This allowed for the comparison of the cluster solution with existing two- and 
three-factor solutions by way of bivariate correlations, angle measures, and Euclidean distances between the vectors. The results of this 
analysis are shown in Fig. 3. 

We first compared the cluster axis to the two PCs of the two-factor model. The cluster axis was strongly correlated with PC1, r 
(2220) = 0.99, with a very small cosine similarity, CS◦ = 9.74, and was close in Euclidean space, distance = 57.74. However, for PC2, 
the relationship was close to orthogonal, r(2220) = 0.10, CS◦ = 84.49, and the vector was further away, distance = 99.29. 

For the three factor model, the cluster axis showed a strong relationship with the first factor, r(2220) = 0.96, CS◦ = 15.90, and this 
factor was the closest in Euclidean space to the cluster axis, distance = 42.88. The cluster axis showed a strong negative relationship 
with factor two (the vectors point in opposite directions), r(2200) = − 0.87, CS◦ = 149.95, and was furthest away from this vector, 
distance = 127.37. The cluster axis also showed a negative relationship with factor three, r(2220) = − 0.39, CS◦ = 112.65, distance =
109.95. 

4.3. Discussion 

Taken together, the results so far suggest that multidimensional impressions of individuals give rise to essentially two stable and 
separable clusters. Inspection of the odds of assignment to either category from the classifier model points towards a kind of approach- 
avoid continuum - higher levels of impressions such as meanness and aggressiveness (e.g., avoid) are associated with greater prob
abilities of belonging to cluster one, and higher levels of caring and sociability impressions (approach) are associated with cluster zero. 
We took a stringent approach that used heavily restricted priors to avoid overstating any effects, and while some traits had insufficient 
evidence of contributing to the separation, those with the largest effects differed strongly in their valence. Moreover, the model did 
reasonably well in identifying out-of-sample clusters. While less restricted priors may have given better performance, fitting models to 
the same dataset that clusters were generated from should be approached with caution. However, the results indicate separation 
between clusters appears to be a property of a general positive to negative impression, and that some traits hold more influence than 
others, as indicated by the posterior distributions of the coefficients. 

The difference between these clusters, as derived using an LDA and vector projection techniques, showed similarities to existing 
model components. The cluster axis was geometrically closest, and most strongly aligned, to the first components of the two- and three- 
factor models. Both of these components index a form of positive expression, and indeed are characterised as valence and approach
ability in the original studies. Interestingly, the cluster axis was distant from and pointed in the opposite direction to the youthful- 
attractive component of the three-factor model, indicating a negative correlation. Conceptually, this means that faces lower on the 
cluster axis are generally higher on the youthful-attractiveness component, and the reverse, reflecting the low probability of attrac
tiveness perceptions resulting in a cluster one assignment. Finally, the cluster axis seems relatively weakly related to dominance 
components. The PCA dominance component was almost orthogonal, and the FA dominance component was similarly distant but 
showed a negative relationship. This is a significant theoretical advance as it indicates that perceptual profiles of a face result generally 
in two clusters, which are best separated by valence-like information. That the cluster axis – derived by considering how faces are 
grouped, and not how trait perceptions are grouped – shows weak relationships with dominance may speak to differences in how 
impression formation functions practically. At least in the context within which faces were rated here, valence seems a vital component 
of impression formation, with dominance only weakly so. 

One issue with the current work is that the data used to generate the clusters were also used to classify them. This may explain the 
very clear separation achieved by the classifier on test data, with an ROC-AUC of close to one. A second issue is that the clusters may 
only be meaningful in the current set of trait impressions, though they emerge in other datasets. While trait impressions are generally 
consistent between raters (Sutherland et al., 2019), they arise from the physical appearance of individuals (Todorov et al., 2013). In the 

Fig. 3. Polar coordinate representation of the relationship between the cluster axis derived with LDA (centre pole) and existing model factors. 
Angles are represented in degrees, and distance (the length of the vector between the cluster axis and another) is given in Euclidean distance. 
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following experiment, we test the reliability of the identified clusters by using data other than trait impressions to separate them – 
namely, parameters representing facial appearance itself. 

5. Experiment 4: Predicting cluster membership from facial appearance 

Existing two- and three-factor models of social perception (Oosterhof & Todorov, 2008; Sutherland et al., 2013) allow for the 
recovery of the facial appearances associated with scoring high or low on the generated axes. For example, Sutherland and colleagues 
(Sutherland et al., 2013) illustrated the facial appearances representing high and low scorers at the extreme ends of their three factors. 
Approachable (factor one) faces had prominent smiles rather than more neutral expressions, youthful-attractive (factor two) faces 
appeared more feminine and attractive versus more elderly, and more dominant (factor three) faces appeared more masculine and 
older (but not necessarily aggressive). Similarly, the two-factor model described by Oosterhof and Todorov (2008) showed that faces 
scoring high and low on factor one appear smiling and angry respectively, and those high and low on factor two appear masculine 
versus babyfaced. 

Thus far, we have demonstrated that clusters of individuals exist who receive a particular combination of impressions, with faces in 
cluster one receiving generally negative social evaluations compared to cluster zero. This pattern also emerged when the trait space 
was reduced to its component measures, indicating that the realisation of these models – how this more compact representation of 
social evaluations translates to perceptions of individuals – can be summarised as two groups of appearances. 

Next, we seek to extract the facial appearances associated with these clusters. Rather than simply averaging or transforming ap
pearances between faces in each cluster, we take a more direct approach that generates facial appearance based on all available image 
data. Given only parameters describing facial shape or texture, can a statistical model separate faces into their assigned clusters? This 
represents a stricter and more general test of the reliability of our cluster solutions, in that if clusters do not encode meaningful dif
ferences in facial appearance then it is likely they are statistical artefacts of the clustering algorithm or the trait data used. However, if 
they are separable based solely on appearance, then it is possible for statistical models, given a representation of a face in a photograph, 
to assign cluster labels without the need for a reiteration of the initial clustering algorithms. That is, the clustering solution can be 
represented beyond the current dataset without the need for face ratings or the application of further clustering algorithms. Indeed, 
existing work demonstrates that facial first impressions can be computationally modelled from shape features, as well as texture and 
hue (Vernon, Sutherland, Young, & Hartley, 2014), suggesting that statistical regularities in impression-appearance relationships can 
be successfully computationally extracted from face images. 

5.1. Method 

5.1.1. Stimuli 
We continued with the 10 k US Adult Faces Database due to the sample size and direct availability of facial photographs. For each of 

the 2222 faces, a set of 77 landmarks placed manually by two annotators (Bainbridge et al., 2013; Khosla, Bainbridge, Torralba, & 
Oliva, 2013) describing the outer face shape, eyebrows, eyes, nose, and mouth were available, and these were used as face shape 
parameters. These xy-coordinates were converted to a vector of 154 values. The facial photographs themselves (256 × 256 pixels, each 
with RGB values) were used as facial texture parameters, extracted by converting the colour image arrays (producing a vector of 
196,608 pixels per image). Facial textures were warped to the average facial shape before being analysed, ensuring each pixel rep
resented the same position across faces (Kramer, Jenkins, & Burton, 2017). However, some shape information may still be available in 
these standardised images from sources of shading, such as around the nose, cheekbones, and eyebrow ridges, which generally do not 
appear in other approaches (e.g., surface laser scans of faces – O’Toole, Price, Vetter, Bartlett, & Blanz, 1999). 

We conducted an additional analysis alongside the use of these more traditional representations of faces by using a deep con
volutional neural network (DCNN) to embed each face into a 128-dimensional vector. We used the Python implementation of the 
OpenFace face recognition model (Amos, Ludwiczuk, & Satyanarayanan, 2016) based on the FaceNet model (Schroff, Kalenichenko, & 
Philbin, 2015). These models are trained using triplet loss to optimise a representation of face identity into 128 dimensions (unlike 
other network models used in psychological research; Wang & Kosinski, 2018). These vectors can be thought of as an identity- 
optimised representation of faces that is more compact than the landmark and texture representations, which have to undergo PCA 
before being analysed. The drawback of this DCNN approach is that, despite its efficiency in representing faces and thus general
isability to new faces, the embeddings themselves are largely uninterpretable (O’Toole, Castillo, Parde, Hill, & Chellappa, 2018). 
However, we use these embeddings as a representation of appearance in an attempt to model cluster appearance in a generalisable 
way. The DCNN failed to encode the appearances of 15 fifteen faces, and as such the analysis proceeded for that data on the remaining 
2207 images. 

As in our earlier experiments, we used the cluster labels derived from mean shift in Experiment 1 as the dependent variable. 

5.1.2. Analytical strategy - Bayesian logistic regression 
We took a similar approach to Experiment 3, focusing on the use of Bayesian logistic regression models tested on out-of-sample data 

to assess how well the clusters could be separated. The raw shape coordinates, pixel values, and DCNN representations were all split 
into a training and test set (75% for each dataset, n = 1666, 1655 for the shape and texture data, and DCNN representations, 
respectively). The shape and texture data were subject to scaling and a PCA that retained 95% of the variance, resulting in 13 com
ponents for shape, and 364 components for texture. For the DCNN representation, the full 128 embeddings were used as predictors, 
and each was scaled before fitting. The test data for shape, texture, and DCNN representations were scaled by the means and standard 
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deviation of the training data, and the shape and texture data were then projected onto the principal components estimated from the 
training data. 

Each logistic regression had Normal priors on each of the coefficients with mean zero and standard deviation of one, introducing 
some regularisation to the estimates. All models were evaluated using ROC-AUC, accuracy, and recall metrics on the test data. Finally, 
we estimated an intercept-only model on the training data, and used it to predict the test data, to serve as a baseline comparison. 

For this model, we again focused on the out-of-sample predictive ability, measured using ROC. We do not seek to directly interpret 
the coefficients of these models, since any one coefficient is difficult to interpret, as they correspond to a principal component or DCNN 
embedding. Our priors introduce some regularisation which will necessarily make the differences in appearances between clusters 
more difficult to discriminate. More generally, the use of three different representations of faces to test whether cluster differences can 
be extracted lends robustness to our conclusions. 

We also sought to extract the general appearances of faces that were associated with higher or lower probability of belonging to 
cluster one. To test this, we took the mean posterior probability predicted by the logistic regression for each face, and regressed it 
against the raw shape and texture data in a multivariate regression (i.e., shape and texture parameters were the dependent outcome 
measure and the probability was the sole predictor), which reveals a linear function between probability of cluster one assignment and 
appearance. 

5.2. Results 

5.2.1. Cluster separation by the classifiers 
For each classifier – trained on shape or texture PCs, or DCNN representations of faces, the test data ROC-AUC scores were generally 

high, indicating the ability of the classifier to separate the clusters based solely on facial appearance information - shape model M =
0.914, 95% HDI [0.907, 0.921], texture model, M = 0.868, [0.854, 0.884], DCNN model, M = 0.769, [0.743, 0.792]. The ROC curves 
for each model are shown in Fig. 4; the ROC-AUC score was 0.5 for the intercept only model. 

For accuracy, the results were also high for each model – shape model M = 0.80, [0.78, 0.83], texture model M = 0.84, [0.83, 0.86], 
DCNN model, M = 0.75, [0.72, 0.78], indicating the classifiers placed out-of-sample data into the correct cluster generally well. In 
comparison, the intercept only model had an accuracy score of M = 0.67, [0.64, 0.71]. 

However, for recall (the number of cluster one faces identified as cluster one correctly), there were differences – shape model M =
0.57, [0.48, 0.65], texture model M = 0.63, [0.58, 0.69], DCNN model, M = 0.37, [0.29, 0.45]. The intercept only classifier had a lower 
score, M = 0.20 [0.12, 0.27]. 

These posterior predictions and their distributions are easily interpreted when compared to the intercept only model. Where the 
highest density intervals do not overlap, there is evidence the classifier is performing better than the base-rate. In some instances, there 
is close overlap, such as for the DCNN accuracy and recall scores. It is possible to compute the probability that the DCNN classifier 
performs better than the intercept only model at all by computing the differences between the DCNN accuracy and recall posteriors and 
the intercept only model, and calculating the probability that the difference is greater than zero. For both accuracy and recall, this 
probability was 99%. 

5.2.2. Extracting facial features 
Statistical representations of face data, either principal components or neural network embeddings, are enough to allow a linear 

separation between clusters. Deriving the appearances associated with higher or lower probabilities is useful as a way to further 
understand the clusters. Here, we passed the mean of the predicted posterior probabilities of the shape-based classifier’s test data to a 
multivariate regression, as the sole predictor variable (a regression with multiple dependent variables, here, shape coordinates and 
pixel values of images), modelling facial shape and texture simultaneously. That is, appearance was directly predicted from the 
probability of belonging to cluster one. We used the shape classifier for computational simplicity and showed the highest ROC-AUC 

Fig. 4. Receiver operating characteristic (ROC) curve posterior distributions for each of the three models, on out-of-sample data.  
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score. We used this model to predict appearance across the range of the probability of belonging to cluster one, allowing us to sta
tistically recover the appearances associated with greater probability of classification to cluster one. The results are shown in Fig. 5. 

5.3. Discussion 

The analyses here provide further evidence of the cluster labels derived from trait ratings. Using the full range of information from 
facial appearance in the form of shape and texture parameters, and neural network facial identity embeddings, a Bayesian classifier 
was able to discriminate reasonably well between clusters from just facial appearance. Using multivariate regression with the predicted 
cluster probabilities effectively visualised the appearances associated with cluster placement – faces appearing relatively more un
happy, aggressive, masculine, and somewhat older, compared with more feminine faces displaying a clear positive facial expression. 

The differences between the classifier metrics were generally small but showed distinct patterns. Overall ROC-AUC scores were 
highest for the shape-data classifier and lowest for the DCNN classifier. For accuracy and recall, the DCNN classifier had poorer 
performance than the shape and texture data classifiers (which had overlaps in their performance). The explanation for this lower 
classification performance may lie in the optimisation of network embeddings for representing identity, as opposed to other facial 
appearance parameters. Conversely, the use of PCA on shape and texture inputs is able to recover important statistics that vary be
tween images that are associated with the perceptions that lead to different cluster assignments, such as smiling, which is arguably less 
important for identity recognition – indeed, accurate recognition should be invariant to expression. The trade-off between a reduced 
classifier accuracy using network embeddings versus traditional shape and texture information with PCA is its generalisability – the 
latter approaches require standardisation, landmarking and image warping, and costly computation of matrix inversions for dimension 
reduction. Conversely, pre-trained network models are becoming more widely available and can embed images rapidly without 
recourse to image alignment or landmarking. 

These findings also support those of the classifier from Experiment 3, whereby higher perceived ratings of traits such as aggressive 

Fig. 5. The predicted appearance of faces recovered from a multivariate regression. The sole predictor was the probability that a face belonged to 
cluster one, taken from the mean of the posterior predictions of test data for the shape classifier. The different levels of probabilities show the 
different appearances that are associated with higher probability of being in cluster one. These appearances were fed to the shape classifier as 
principal components of shape coordinates. 
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and meanness were associated with greater odds of belonging to cluster one. These results also sit clearly alongside existing two- and 
three-factor models of social perception (Oosterhof & Todorov, 2008; Sutherland et al., 2013). In those models, one factor represents 
valence (the first component in PCA-based models, and factor one in FA models) and another represents dominance or aggressiveness 
(component/factor two). By considering how individuals are judged along a combination of traits, as opposed to reducing the number 
of traits to as few as possible, cluster analysis extracts a kind of aggregate of the axes in factor models as realised for individual faces – 
cluster zero faces appear more feminine, approachable, and somewhat younger than the faces in cluster one, merging features asso
ciated with separate axes in existing models. Finally, it is worth noting that despite these models being able to separate faces into 
clusters based solely on morphology, the distinctions are based solely on perception and have little to do with ground-truths about the 
faces themselves. 

6. Experiment 5: Behavioural responses to faces in different clusters 

The analyses thus far indicate the presence of two clusters of appearances in social perception which reliably emerge from full sets 
of ratings, as well as reduced theoretically relevant representations, and can be extracted solely from facial appearance. The clusters 
indicate a kind of basic approach-avoidance continuum, and indeed are similar to the valence component of existing models. In this 
section, we test an important further issue, aiming to understand whether independent observers react to faces from the different 
clusters in the ways indicated by the data-driven methods used above. Here, we employ two different behavioural paradigms to 
investigate observer decisions of approach and avoidance for faces in cluster zero and one, with the prediction that observers will be 
more likely to avoid faces in cluster one, as well as the converse. 

6.1. Method 

6.1.1. Experimental tasks 
We conducted two experimental tasks concurrently to assess responses to the faces. The first was a slightly modified version of the 

rapid display task used by Willis and Todorov (2006). A face was presented for 100 ms, and participants were required to make a 
decision regarding whether to approach or avoid the person, which we label onwards as the ‘brief display paradigm’. The second task 
was previously used by Kramer et al. (2020). Pairs of faces were presented on screen and participants were simply instructed to select 
one of the faces. No further instructions were provided. When participants selected one of the faces, that face increased in size, while 
the other decreased. We label this as the ‘preference paradigm’. 

6.1.2. Participants 
Fifty-nine Amazon MTurk workers (20 females, age M = 40.27 years, SD = 13.34 years) completed the brief display paradigm. 

Seventy-three percent of the sample self-reported as White, 19% Black, 5% Hispanic, and 3% Asian. Fifty-seven different MTurk 
workers (27 females, age M = 37.61 years, SD = 11.04 years) completed the preference paradigm, with 68% self-reporting as White, 
12% Black, 11% Hispanic, 5% Asian, 2% American Indian, and 2% identifying as “other”. Worker location was restricted to Australia, 
Canada, New Zealand, the UK, and the USA, in order to target English speakers. All workers were paid $0.60 for participation. An 
initial sample of 163 workers were recruited, but 34 participants were dropped from the brief display paradigm and 13 from the 
preference paradigm due to failing attention checks during the tasks (see below). Participants provided informed consent prior to 
taking part, and received an online debriefing upon completion, in line with the university’s ethics protocol. The university’s ethics 
committee approved this work, which was carried out in accordance with the provisions of the World Medical Association Declaration 
of Helsinki. 

6.1.3. Stimuli and paradigm details 
We selected 50 faces from each cluster of the 10 k US Adult Faces Database to serve as stimuli for these experiments. By taking the 

centroids computed via mean shift in Experiment 1, derived from the full ratings, we computed the Euclidean distance of each face 
from its respective cluster centroid, and took the 50 faces with the smallest distance (i.e., those closest to the centroid for that cluster) 
as stimuli. 

For the brief display paradigm, two versions of the task were created, where the response options (e.g., press ‘Z’ to approach, press 
‘M’ to avoid) were switched, to avoid order effects. For the preference paradigm, four versions were created in which pairings were 
randomly designated, such that faces from cluster one and zero were paired at random and were displayed to the left and right of the 
centre of the screen. 

We included attention checks to test whether participants were continuing to attend throughout the task (Hauser & Schwarz, 
2016), replacing any participants who failed one or more of these. In the brief display paradigm, two additional faces were included in 
which the internal features had been replaced with the words ‘attention check’. In all other aspects, these faces/trials mirrored the rest 
of the test. However, at the time of responding, the typical instructions were replaced with ‘Attention check: Press Z’ (or ‘M’ for the 
second check) on both sides of the screen. For the preference paradigm, two attention checks were also included. In each, a pair of faces 
appeared in which their internal features had been replaced with the words ‘Attention check: pick this face’ and ‘Attention check: pick 
the other face’. The left/right position of these two faces was reversed for the second attention check. For each experiment, participants 
had to pass both attention checks in order for their data to be retained (and to receive payment). 

Data were collected for both tasks using the Gorilla online testing platform (Anwyl-Irvine, Massonnié, Flitton, Kirkham, & 
Evershed, 2020). 
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6.1.4. Procedure 
Participants followed a link to the studies and were allocated to either the brief display or preference paradigms in a counter

balanced order. Within those studies, participants were counterbalanced across the different versions, as discussed earlier. 
Brief display paradigm. Participants were instructed that they would view a series of 100 faces and would be required to make a 

decision about whether they would approach or avoid that person (by pressing the Z and M keys to indicate a response). Faces were 
presented on screen for 100 ms and participants were shown their response options (‘Z/M’ to avoid or approach), with these labels 
remaining on screen until they made a response. Responses were recorded so that an ‘avoid’ decision was coded as the positive class. 

Preference paradigm. Participants were instructed that they would see 50 pairs of faces (individuals from cluster zero and one, 
paired together as described above) and were asked simply to select a face by clicking on it with the mouse. No further instructions 
were given. Faces were displayed at approximately 256 × 256 pixels initially. When a face was selected, the chosen face doubled in 
size, while the unselected face halved in size (512 pixels square and 128 pixels square, respectively). This configuration remained 
onscreen for 3 s before the next trial began. Responses were recorded so that the selection of a cluster one face was coded as the positive 
class. 

6.1.5. Analytical strategy and sample size considerations 
We utilised Bayesian logistic mixed models to model the data from both experiments. For the brief display paradigm, we modelled 

the probability of a participant opting to avoid a face, using two categorical predictors – most importantly, the cluster that the face 
belonged to (coded zero and one), and the task version they completed, to examine differences across counterbalanced versions. 
Random intercepts were fitted for faces, and random slopes for cluster category within participants as well intercepts, allowing for each 
participant to respond differently to the clusters. We set a normal prior on the difference between clusters (i.e., the cluster coefficient) 
with a mean of zero and standard deviation of 0.25. In odds, this prior assigns most of its probability density to odds of between 0.77 
and 1.28, constraining the effect to be small – that is, we employ a skeptical prior on the differences in approach decisions to cluster 
zero and one faces. 

For the preference paradigm, we estimated an intercept (baseline rate of selecting a cluster one face) with an additional predictor of 
task to control for differences between the counterbalanced presentations, and had random intercepts per participant. We chose very 
weakly informative priors for the parameters (Capretto, Piho, Kumar, Westfall, Yarkoni, & Martin, 2020), as constraining the intercept 
introduces unnecessary bias to the baseline odds of choosing to approach or avoid. 

As stated earlier, the use of Bayesian methods is difficult to reconcile with statistical power, and we use restrictive priors to lend a 
conservative approach to our model. However, as we use a mixed model design, we are able to consider all stimuli and participants as 
random factors. Finally, we opted to conduct an analogous frequentist power analysis of the brief-display paradigm model via 
simulation to generate an idea of statistical power, for a range of sample sizes and effect sizes. We sampled a range of fixed effect 
coefficient sizes (in log-odds) from 0.5 to 1.5, in steps of 0.25. These effect sizes were evaluated at sample sizes of 20 through to 100 in 
steps of 20, and repeated 250 times per combination of sample size and effect size. The constant of 100 faces was fixed in the sim
ulations. Even with 20 participants, our design allowed for detection of fixed effects coefficients as small as 0.5, or odds of 1.68. The 
inclusion of a restrictive prior again indicates that effects must be strong to overwhelm the restriction, guarding against false positive 
conclusions. 

6.2. Results 

We report all effects as odds ratios (by exponentiating the estimated coefficients) for a more direct interpretation, and report the 
mean of the posterior distribution, along with the 95% HDI. 

Brief display paradigm. The fixed effect of cluster category showed that the odds of choosing to avoid a cluster one face were 
double that of a cluster zero faces, OR = 2.08, 95% HDI [1.47, 3.13]. This is a strong effect even with a restrictive prior, and as we can 
work directly with the posterior of the coefficient, it is possible to state various probabilities associated with the effect. For example, 
there is a 99% probability the odds are greater than one, and a 58% probability the odds are greater than two. Differences between task 
versions had low odds with wide uncertainty, overlapping zero, OR = 1.13 [0.56, 2.29]. 

Preference paradigm. The fixed intercept term, representing the odds of choosing to approach a cluster one face, was low, OR =
0.28 [0.14, 0.61]. That is, accounting for baseline selection tendencies in participants, the odds of selecting a cluster one face were 
around 0.28 times that of selecting a cluster zero face, indicating much lower likelihood of approaching cluster one faces. Each of the 
task versions showed wide intervals overlapping with null effects (version B compared to A, OR = 1.51 [0.51, 4.43], C compared to A, 
OR = 0.76 [0.25, 2.07], D compared to A, OR = 0.68 [0.25, 1.72]). 

6.3. Discussion 

These results demonstrate that observer reaction to faces from the different clusters are in line with the results of the unsupervised 
clustering solutions generated from trait impressions of faces, whereby clustering techniques organised faces into an approach- 
avoidance continuum, which was also supported by the extraction of associated facial features. These findings show that observers 
can form ‘avoid’ decisions of cluster one faces quickly and reliably, and that when given the unprompted option to view faces from the 
clusters more closely (i.e., approach them), there is a much higher likelihood of approaching cluster zero faces. 
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7. General discussion 

We report evidence from both computational and behavioural investigations demonstrating a two-cluster solution to social 
perception using unsupervised learning techniques. First, we found that mean shift, a non-parametric clustering technique, consis
tently extracted two clusters of perceptual profiles from a large, multidimensional perceived social impression database. These clusters 
were present in both the full representation of the data as well as within current theoretical representations of impression space. 
Second, we revealed the consistency of these clusters in other datasets, in both the full and reduced spaces, with some caveats. Third, 
using Bayesian methods, we explored the likely perceptual profile differences between cluster zero and one, which correspond 
geometrically to valence components in existing models – cluster one faces are perceived as more mean, aggressive, and unhappy. 
Fourth, we demonstrated that the probability of belonging to cluster one or zero can be mapped to statistical regularities in facial 
appearance, captured from neural network or more straightforward (PCA) approaches. Finally, we provided evidence that observers 
have a higher probability of engaging in avoidance behaviour of cluster one as compared with cluster zero faces, under both a brief 
display task as well as an untimed preference task. 

Current two- and three-dimensional models of impressions (Oosterhof & Todorov, 2008; Sutherland et al., 2013) focus on the use of 
dimension-reduction techniques like FA or PCA to linearly combine large numbers of correlated perceptions into a reduced number of 
factors, thought to represent the fundamental components on which impressions are made. These factors typically capture elements of 
valence/approachability, trustworthiness, or attractiveness (Sutherland et al., 2013, Sutherland et al., 2015). However, our main 
motivation here was not to draw comparisons to existing models, but to ask a separate yet related question about how individual faces 
‘go together’ when judged on many social traits. Two clusters emerged consistently across datasets and theoretical representations of 
social trait space, and this clustering is linked closely with these existing models. For example, we found that the separation between 
these clusters was easily learned – faces that were perceived as sociable, trustworthy, attractive, and caring, were much more likely to 
be placed in cluster zero, while faces perceived as mean, aggressive, and unhappy were placed in cluster one. The LDA vector that 
separated the clusters allowed for direct comparisons with existing models, and we found that this vector is closely aligned to valence 
and approachability, but relatively uncorrelated with dominance factors. 

One interpretation of the ‘clustering axis’ is that it is a relatively coarse measure of the factors that are generated by PCA or FA 
approaches on the same data. However, it is worth restating that as clustering demonstrates how faces ‘go together’, and that these 
clusters also exist within the PCA and FA spaces of social perception, the clustering axis may represent the practical, behavioural 
realisation of how these psychological two- and three-factor models are used. That is, while the array of social psychological per
ceptions that exist are underpinned by a small number of factors, those factors are not used in a uniform manner. Rather, individual 
faces are grouped along these latent factors, and the positioning therein may reflect quick and possibly automatic decisions about the 
approachability of a conspecific (for a review, see Krieglmeyer, De Houwer, & Deutsch, 2013). 

It is premature to conclude that social perception is a unidimensional process. Rather, the cluster axis described here is entirely 
complementary to existing models. PCA and FA approaches identify the lower level structure of social perception, and clustering 
approaches describe how this lower-level space is populated. The grouping exhibited in the clustering results fits closely with some of 
the earliest ideas in social psychological research, namely that a fundamental aspect of cognition is how to respond to stimuli in the 
environment with regards to moving towards or away from it (Allport, 1935; Bamford & Ward, 2008; Chen & Bargh, 1999). More 
generally, these findings fit with enduring social cognitive models of person perception – warmth and competence underpin and 
accurately predict many social evaluations, and are thought to reflect evolutionary pressures that help determine ‘friend or foe’ (Fiske, 
Cuddy, & Glick, 2007). That faces exhibit a clear binary clustering on social evaluations that seem to describe approach and avoid 
decisions lends support to a fundamental aspect of human psychology. The evidence described here seems to indicate that the existing 
models of social perception may ultimately be used to make this rapid ‘approach or avoid’ decision. 

It is important to note our findings here speak only to aggregate level responses in facial impressions – average impression ratings 
were taken from a large sample of observers (Bainbridge et al., 2013). Recent work has shown that lower-dimensional representations 
of impressions are relatively stable within individuals (Sutherland et al., 2019), indicating that aggregate level PCA or FA are useful 
representations of individual perceptual spaces. An outstanding question is whether individuals exhibit the same cluster structure 
found at the aggregate level that indexes an approach-avoidance dimension, or whether individuals exhibit different numbers of 
clusters when making judgements of others. 

Our analyses employed a range of different approaches to examine the influence of perceptions and facial appearance on cluster 
placement, with a focus on model-building and out-of-sample prediction. Where we relied upon significance tests, we generally had 
very high statistical power. Our use of Bayesian estimation in Experiments 3–5 also allowed us to incorporate sceptical, conservative 
priors into our models. While the use of priors can often be criticised as inducing subjectivity into analyses, we suggest that we have 
used them to guard against false positive conclusions (van de Schoot et al., 2021) – by using priors to regularise our estimates, we 
actively made it harder for our models to dissociate and find differences between clusters. This is especially appropriate as we propose 
a novel finding in the area of social face perception. In Experiments 3–4, we also focussed on the generalisability of our models by 
assessing their out-of-sample predictive capabilities, lending further robustness. In addition, we employed various approaches to 
converge on conclusions, such as the use of different face databases in Experiment 2, varying face image representations in Experiment 
4, and two behavioural studies in Experiment 5. 

Models of face perception are traditionally generated from a combination of White and/or computer-generated faces (Oosterhof & 
Todorov, 2008; Sutherland et al., 2013), and only recent work has made efforts to incorporate faces of different ethnicities to test for 
the presence of distinct factors (Jones et al., 2021; Sutherland et al., 2018; Wang et al., 2019). Here, the main dataset used for in
ferences was the 10 k US Adult Faces Database (Bainbridge et al., 2013), which, while predominantly White (83%), nonetheless 
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contains a variety of different face ethnicities under various naturalistic poses. While the other datasets we investigated also produced 
two clusters, they were restricted to White faces only (Lin et al., 2019; Sutherland et al., 2013), which does limit the generalisability of 
the emergence of two clusters. In our behavioural experiment, we obtained a mixed sample of participant ethnicities, which had a 
White majority, and insufficient numbers of other groups to obtain reliable estimates of differences between ethnicities. As such, while 
recent studies point to a general stability of social face perception factors, the generalisability of clusters across the ethnicities of both 
faces and perceivers has not been fully investigated here. 

We conclude that social impressions result in two broad, stable clusters of individuals. Assignment to these clusters depends on a 
combination of correlated perceptual traits that are associated with clearly different aspects of morphology, which are themselves 
associated with positive and negative emotional expressions, as well as masculinity. Our findings suggest that the structure of social 
impression space may be more straightforward than previously thought, such that existing latent factors that support the wealth of 
possible social perceptions are utilised to approach-avoidance decisions. That is, the practical realisation of current models is a simple 
binary decision about whether to approach or avoid an individual. 
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Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research 

Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x. 
Bainbridge, W. A., Isola, P., & Oliva, A. (2013). The intrinsic memorability of face photographs. Journal of Experimental Psychology: General, 142(4), 1323–1334. 

https://doi.org/10.1037/a0033872. 
Balas, B., & Pacella, J. (2017). Trustworthiness perception is disrupted in artificial faces. Computers in Human Behavior, 77, 240–248. https://doi.org/10.1016/j. 

chb.2017.08.045. 
Balas, B., Tupa, L., & Pacella, J. (2018). Measuring social variables in real and artificial faces. Computers in Human Behavior, 88, 236–243. https://doi.org/10.1016/j. 

chb.2018.07.013. 
Bamford, S., & Ward, R. (2008). Predispositions to approach and avoid are contextually sensitive and goal dependent. Emotion, 8(2), 174–183. https://doi.org/ 

10.1037/1528-3542.8.2.174. 
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